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1 Topic Advice 
 
Functions in complex analysis behave much better than functions in real analysis. Consider the definition of derivative at a 
point 𝑧0, which is formally the same for real functions of a real variable and for complex functions of a complex variable:  

lim
ℎ→0

𝑓(𝑧0+ℎ)−𝑓(𝑧0)

ℎ
  

In the real case, ℎ is real, and approaches 0 along the real line, from the right and from the left.   In the complex case, h is 
complex, and approaches 0 from any possible direction. This makes it more difficult for the limit to exist, and thus for 
complex functions of a complex variable to have a derivative. When such a function is viewed as a pair of real functions of 
two real variables, that is, when we write 
𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) (where u and v are real valued) 

The existence of the above limit translates into the Cauchy-Riemann equations 
𝜕𝑢

𝑑𝑥
=

𝜕𝑣

𝑑𝑦
  and 

𝜕𝑢

𝑑𝑦
= − 

𝜕𝑣

𝑑𝑥
 

This again shows that a function of the form 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)  is smooth in the complex sense only if it satisfies the 
rigidity imposed by the Cauchy-Riemann Equations. 
 
In complex analysis, the notion of pointwise differentiability is not enough and we in fact need differentiability "in nearby 
neighbourhoods". A complex function 𝑓(𝑧) is said to be holomorphic at 𝑧0 if there is a neighbourhood around 𝑧0 in 
which 𝑓 is differentiable.  Every holomorphic function has a local representation as a convergent power series. While the 
definition "differentiable in a neighbourhood" is a suitably-equivalent way of saying "holomorphic" in the context 
of complex analysis, it is not necessarily the most informative way. The most informative definition of holomorphic is just 
the extension of the one from real analysis: a complex 𝑓(𝑧) is holomorphic at z0 iff its Taylor series expansion 
at z0 converges to f(z) in a neighbourhood of z0.  In complex analysis, this is equivalent to the statement that it is 
differentiable in a neighbourhood. In real analysis, it is not equivalent. In fact, in complex analysis the 
following equivalences hold - all (complex-)differentiable functions are (complex-)smooth and all smooth functions are 
holomorphic.  However, the definitions of these terms need not be the same, even though we could do so because of 
these equivalences.  
 
The crux of most complex analysis courses is contour integration.  Get good at the techniques!  
Methods include: 

• Direct integration of a complex-valued function along a curve in the complex plane (a contour) 

• Application of Cauchy Integral Formula 

• Application of the Residue Theorem 
 
This along with differentiability is explained in more detail in the Appendix.  
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2 Pre-Requisites 
 
There aren’t many pre-requisites except enough calculus to have covered partial differential equations, a course in real 
analysis and a little familiarity with metric spaces.  
 
In detail:  

• Sequences and series of numbers and of vectors 

• Derivative in one variable  

• Integration in one variable  

• Integration with parameters 
• Sequences and series of functions  

• Uniform vs. pointwise convergence 

• Derivative in several variables 

• Line integrals  

• Topology of metric spaces 

 
Having a good basics of complex numbers mentioned below is vital!  
 

2.1 Complex Numbers 
 

2.1.1 Jargon 
 

Consider 𝑧 = 𝑥 + 𝑖𝑦, with 𝑥, 𝑦 ∈ ℝ 

• 𝑥 = 𝑅𝑒(𝑧) means the real part of 𝑧 

• 𝑦 = 𝐼𝑚(𝑧) means the imaginary part of 𝑧 

• 𝑧∗ 𝑜𝑟 𝑧̅ = 𝑥 − 𝑖𝑦  is the complex conjugate of z 

 

2.1.2 Important Results 
 

• 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) =  𝑟𝑒𝑖𝜃 (Note: 𝑟𝑒𝑖𝜃  is Euler’s form) 

Where:  

|𝑧| = 𝑟 

arg 𝑧 = 𝜃  

𝑧∗ = 𝑟(cos 𝜃 − 𝑖 sin 𝜃) = 𝑟𝑒−𝑖𝜃  

• 𝑧𝑛 = 𝑟𝑛(cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃) = 𝑟𝑛𝑒𝑖𝑛𝜃   (by De Moivre’s Theorem) 

• 𝑧−𝑛 = 𝑟𝑛(cos 𝑛𝜃 − 𝑖 sin 𝑛𝜃) = 𝑟𝑛𝑒−𝑖𝑛𝜃   

• consider 𝑧 =  cos 𝜃 + 𝑖 sin 𝜃  = 𝑒𝑖𝜃 

𝑧 +
1

𝑧
= 2 cos 𝜃  

𝑧 −
1

𝑧
= 2𝑖 sin 𝜃  

𝑧𝑛 +
1

𝑧𝑛 = 𝑧𝑛 + 𝑧−𝑛 = 2 cos 𝑛𝜃 so rearranging ⇒ cos 𝑛𝜃 = 
𝑧𝑛+𝑧−𝑛

2
 

𝑧𝑛 −
1

𝑧𝑛 = 𝑧𝑛 − 𝑧−𝑛 = 2𝑖 sin 𝑛𝜃 so rearranging ⇒  sin 𝑛𝜃 = 
𝑧𝑛−𝑧−𝑛

2𝑖
    

 

2.1.3 Conjugate Rules 
 

• (𝑧 ± 𝑤)∗ = 𝑧∗ ± 𝑤∗ 

• (𝑧𝑤)∗ = 𝑧∗𝑤∗  

• (
𝑧

𝑤
)

∗
=

𝑧∗

𝑤∗
 if 𝑤 ≠ 0 
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• 𝑧. 𝑧∗ = |𝑧|2  

 

2.1.4 Inequalities 
 

• |𝑅𝑒(𝑧)| ≤ |𝑧| and |𝐼𝑚(𝑧)| ≤ |𝑧|  

• |𝑧 + 𝑤| ≤ |𝑧| + |𝑤|  

• |𝑧 + 𝑤| ≥ |𝑧| − |𝑤|  

• |𝑒𝑟𝑒𝑎𝑙| = 𝑒𝑟𝑒𝑎𝑙 

 

2.1.5 Modulus/Argument 
 

• |𝑧1𝑧2| = |𝑧1||𝑧2| 

• |
𝑧1

𝑧2
|=

|𝑧1|

|𝑧2|
 

• arg(𝑧1𝑧2) = arg(𝑧1) + arg (𝑧2).  This works like indices rules.  When we multiply we add the powers 

So  [𝑟1(cos 𝜃1 + 𝑖 sin 𝜃1)][𝑟2(cos 𝜃2 + 𝑖 sin 𝜃2)] can be multiplied quickly and is 

 𝑟1𝑟2[cos(𝜃1 + 𝜃2)  +𝑖 sin(𝜃1 + 𝜃2) = 𝑟1𝑟2𝑒𝑖(𝜃1+𝜃2) 

• 𝑎𝑟𝑔 (
𝑧1

𝑧2
) = arg(𝑧1) − arg (𝑧2)  This works like indices rules.  When we divide we subtract the powers 

So 
𝑟1(cos 𝜃1+𝑖 sin 𝜃1)

𝑟2(cos 𝜃2+𝑖 sin 𝜃2)
  can be divided quickly and is 

𝑟1

𝑟2
[cos(𝜃1 − 𝜃2) + 𝑖 sin(𝜃1 − 𝜃2)] 

 

2.1.6 Loci 
|𝑧 − 𝑧𝑜| = 𝑟 is a circle of radius r centred at 𝑧0 
 

 

http://www.mymathscloud.com/


www.mymathscloud.com 
 

© mymathscloud 

 

Page 6 of 23 

3 Textbook Advice 
 
Textbook terminology can be confusing for beginners.  For example, some books will use the term "analytic" 
while others use "holomorphic".  The best books will explain the difference between these two terms and also 
explain why they are equivalent for functions of a complex variable.   
 
There are a couple of different ways to present complex analysis. Some texts take a geometric approach, 
following Riemann. Others take a more algebraic approach, following Cauchy. For self-study, I find it helpful to 
follow both approaches; the two perspectives complement each other and enhance understanding.  
 

3.1 Fun Texts 
 

• An Imaginary Tale: The Story of √−𝟏 
If you want a fun introduction without too much rigor 

 

3.2 Explanatory Texts 
 
There is no lack of good books on complex variable theory/techniques, since most of complex analysis involves 
applications. You might like to choose a more "explanatory" text when just starting out such as: 

• The Schaum’s Outline Series Complex Variables, Murray Spiegel 
This is great for worked examples 

• A Friendly Approach to Complex Analysis, Amol Sasane 

• Complex Analysis, David O Tall  

• Complex Analysis, Howie 
 

3.3 Other Textbooks 
 

• Complex Analysis, Lars Ahlfors 
This is the standard graduate text used by most universities 

 

• Visual Complex Analysis, Tristan Needham 
This gives a great introduction which emphasises the geometric approach and has wonderful 
illustrations 
 

• Complex Variables & Applications, Brown and Churchill 
This takes an algebraic approach.  Another great book! It also treats the subject rigorously yet 
elementary for a first book 

 

• Introduction to Complex Analysis, Priestley 
 

• Complex Analysis, Joaquim Bruna & Julià Cufi 
 

• Complex Analysis, Lang  
 

• Complex Analysis with Applications, Asmar and Grafakos 
A nice undergraduate book 

 

• Elementary Theory of Analytic Functions of One or Several Complex Variables, Henri Cartan 
 

• Complex Analysis, Stein and Shakarchi  
This is an excellent book 
 

• Complex Analysis and Differential Equations, Luis Barreira and Claudia Vals 
This book has a lot of diagrams and gives the reader a bit of intuition into what is going on.  This is not 
as universal as Ahlfors, but it covers almost all topics usually taken in a Complex Analysis course 

 

• Functions of One Complex Variable, Conway  
 

• The Complex Plane, Ian Stewart 
This has older editions called “The Hitchhikers Guide to the Complex Plane” 
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• Fundamentals of Complex Analysis, Saff and Snider 
 

• Complex Analysis, Theodore Gamelin  
This book has good insights and partial solutions are available online 

 
• Mathematical Analysis, Apostol 

 

• Complex Analysis, Rudin 
Rudin is somewhat inaccessible.  I would not recommend this textbook, unless you already have a 
strong grasp of complex analysis 
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4 Videos 
 

• TheMathCoach 

https://www.youtube.com/watch?v=Ico7k2QlPH8&list=PLraTC6fSWOiptqOd_rMhFk6

mZM30l7SqQ 
 

• Faculty of Khan 

https://www.youtube.com/playlist?list=PLdgVBOaXkb9CNMqbsL9GTWwU542DiRrPB 

 

• Richard E. Borcherds  

https://www.youtube.com/playlist?list=PL8yHsr3EFj537_iYA5QrvwhvMlpkJ1yGN 
This guy is a field medalist and has his entire course up 
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5 Appendix 
 
 

5.1 Complex Differentiability 
 

Differentiable in Complex Analysis does not simply mean differentiable from the left or the right like 
differentiation on the real line, we now look at all possible directions.  

 

You will be familiar that differentiable at a point 𝑧0 means lim
ℎ→0

𝑓(𝑧0+ℎ)−𝑓(𝑧0)

ℎ
, but now ℎ is any tiny complex 

number and can go in ANY DIRECTION!  Hence a derivative in two dimensions, rather than a derivative in one 
direction.  

 

5.1.1 Differentiability Pointwise 
 

𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) (where u and v are real functions and 𝑧 = 𝑥 + 𝑖𝑦) is differentiable at 𝒛𝟎, if 
 

• the Cauchy Riemann Equations 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
  and 

𝜕𝑢

𝜕𝑦
= − 

𝜕𝑣

𝜕𝑥
   hold at 𝑧0  (this is a necessary, but not 

sufficient condition) 
Note: It is also necessary that u and v be real differentiable which is a stronger condition than the 
existence of the partial derivatives, but it is not necessary that these partial derivatives be continuous. 

 
➢ How to show not pointwise complex differentiable? 

Show the CRE’s do not hold 
 

 
𝑓(𝑧) = 2𝑥 + 𝑖𝑥𝑦2  
Determine whether the function is differentiable 
 

 
𝑓(𝑧) = 𝑢(𝑥, 𝑦)+𝑖 𝑣(𝑥, 𝑦) so 𝑢(𝑥, 𝑦) = 2𝑥 and 𝑣(𝑥, 𝑦) = 𝑥𝑦2  
 
𝜕𝑢

𝜕𝑥
= 2  

 
𝜕𝑢

𝜕𝑦
= 0  

 
𝜕𝑣

𝜕𝑥
= 𝑦2  

 
𝜕𝑣

𝜕𝑦
= 2𝑥𝑦  

 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
  ⟹ 2= 2𝑥𝑦 ⟹ 𝑥𝑦 = 1 

 
𝜕𝑢

𝜕𝑦
= − 

𝜕𝑣

𝜕𝑥
⟹ 0= −𝑦2 ⟹ 𝑦 = 0 

 
𝑓(𝑧) is not differentiable (and thus obviously not holomorphic) 
 

 
➢ How to show pointwise complex differentiable? 

Show the CRE’s hold 
To find the points where complex differentiable, use the CRE’s to set up equations and solve. 
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𝑓(𝑧) = 𝑥2 + 𝑖𝑦2  
Determine whether the function is differentiable 
 

 
𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖 𝑣(𝑥, 𝑦)  so  𝑢(𝑥, 𝑦) = 𝑥2 and 𝑣(𝑥, 𝑦) = 𝑦2  
 
𝜕𝑢

𝜕𝑥
= 2𝑥  

 
𝜕𝑢

𝜕𝑦
= 0  

 
𝜕𝑣

𝜕𝑥
= 0  

 
𝜕𝑣

𝜕𝑦
= 2𝑦  

 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
  ⟹ 2𝑥 = 2𝑦 ⟹ 𝑥 = 𝑦 

 
𝜕𝑢

𝜕𝑦
= − 

𝜕𝑣

𝜕𝑥
⟹ 0= 0 

 
𝑓(𝑧) is only differentiable at the points where 𝑧 = 𝑥 + 𝑖𝑥 
 

 

5.1.2 Differentiability In A Region 
 

If 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) (where u and v are real functions and 𝑧 = 𝑥 + 𝑖𝑦) is differentiable in a region R, 
around 𝑧0  iff and the following conditions are fulfilled in R  

• the Cauchy Riemann Equations 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
  and 

𝜕𝑢

𝜕𝑦
= − 

𝜕𝑣

𝜕𝑥
   hold at 𝑧0   

• 
𝜕𝑢

𝜕𝑥
,

𝜕𝑣

𝜕𝑦
  ,  

𝜕𝑢

𝜕𝑦
, − 

𝜕𝑣

𝜕𝑥
   are continuous at 𝑧0 

 
Differentiable in a region R means holomorphic/analytic.  See section 2.1.2.1 on holomorphic for more detail.  

 
➢ How to show not holomorphic? 

Show the CRE’s do not hold 
 

➢ How to show holomorphic 
The Cauchy Riemann equations are not sufficient to show holomorphic, but they are necessary. 
To show the CRE’s are true for all values in a region then we can say holomorphic i.e. if they hold for all 
(x,y) in that region.  We also need the partial derivatives to be continuous.  

 

 
𝑓(𝑧) = 𝑧2  
Determine whether the function is holomorphic.  
 

 
𝑧 = 𝑥 + 𝑖𝑦  
𝑓(𝑧) = (𝑥 + 𝑖𝑦)2 = 𝑥2 − 𝑦2 + 𝑖2𝑥𝑦  
𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖 𝑣(𝑥, 𝑦)  so 𝑢(𝑥, 𝑦) = 𝑥2 − 𝑦2 and 𝑣(𝑥, 𝑦) = 2𝑥𝑦  

 
𝜕𝑢

𝜕𝑥
= 2𝑥  

 
𝜕𝑢

𝜕𝑦
= −2𝑦  

 
𝜕𝑣

𝜕𝑥
= 2𝑦  

 
𝜕𝑣

𝜕𝑦
= 2𝑥  
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𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝑑𝑦
  and 

𝜕𝑢

𝜕𝑦
= − 

𝜕𝑣

𝜕𝑥
   and hold for all (𝑥, 𝑦) and the partial derivatives are continuous so 𝑓 is 

holomorphic 
 

 

Note:  In addition to CREs’ you can also use the definition of derivative lim
ℎ→0

𝑓(𝑧0+ℎ)−𝑓(ℎ)

ℎ
 and approach 

horizontally (real line) and vertically (imaginary line) and show these are the same (this is how we prove 
the CRE’s). 

 

 

Determine whether f(z) = |z|2  is holomorphic 
 

 
𝑧0 = 𝑥0 + 𝑖𝑦0  
ℎ = ℎ1 + 𝑖ℎ2  
 

 

Horizontally: (real line) 

 lim
ℎ1→0

𝑓(𝑧0+ℎ1)−𝑓(𝑧0)

𝑧0+ℎ1−𝑧0
 

= lim
ℎ1→0

𝑓(𝑧0+ℎ1)−𝑓(𝑧0)

ℎ1
  

= lim
ℎ1→0

|𝑧0+ℎ1|2−|𝑧0|2

ℎ1
 

= lim
ℎ1→0

|𝑥0+𝑖𝑦0+ℎ1|2−|𝑥0+𝑖𝑦0|2

ℎ1
  

= lim
ℎ1→0

(𝑥0
2+ℎ1)2+𝑦0

2−(𝑥0
2+𝑦0

2)

ℎ1
  

= lim
ℎ1→0

𝑥0
2+2𝑥0ℎ1+ℎ1

2−𝑥0
2

ℎ1
  

= lim
ℎ1→0

ℎ1(2𝑥0+ℎ1)

ℎ1
  

= lim
ℎ1→0

2𝑥0 + ℎ1  

= 2𝑥0  

 

Vertically: (imaginary line) 

 lim
ℎ2→0

𝑓(𝑧0+𝑖ℎ2)−𝑓(𝑧0)

𝑧0+𝑖ℎ2−𝑧0
 

= lim
ℎ2→0

𝑓(𝑧0+𝑖ℎ2)−𝑓(𝑧0)

𝑖ℎ2
  

= lim
ℎ2→0

|𝑧0+𝑖ℎ2|2−|𝑧0|2

𝑖ℎ2
 

= lim
ℎ2→0

|𝑥0+𝑖𝑦0+𝑖ℎ2|2−|𝑥0+𝑖𝑦0|2

𝑖ℎ2
  

= lim
ℎ2→0

𝑥0
2+(𝑦0+ℎ2)2−(𝑥0

2+𝑦0
2)

𝑖ℎ2
  

= lim
ℎ2→0

𝑦0
2+2𝑦0ℎ2+ℎ2

2−𝑦0
2

𝑖ℎ2
  

= lim
ℎ2→0

ℎ2(2𝑦0+ℎ2)

𝑖ℎ2
  

= lim
ℎ2→0

2𝑦0+ℎ2

𝑖
  

= −2𝑦0𝑖  

  2𝑥0 ≠ −2𝑦0𝑖 except at (𝑥0, 𝑦0) = (0,0)   
 

This is an example of complex variable function which is differentiable at a point (0,0) but not holomorphic at 
that point.  This function has a complex derivative at 𝑧 = 0, but nowhere else (to be holomorphic, it must 
differentiable in a neighbourhood of 𝑧0). This is a great example to see that a function can be complex 
differentiable at just one point 𝑧0 without being complex differentiable in an open set (neighbourhood) 
about that point).  
 

 

5.1.2.1 Holomorphic 
 

Holomorphic is defined with neighbourhoods etc and not fully equivalent to differentiability.  The phrase 
"holomorphic at a point z" means not just differentiable at z, but differentiable everywhere within some open 
disk centred at z in the complex plane (in a neighbourhood of every point in a region R).  
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Note: A function can be differentiable without being holomorphic.   

  
Something to think about: Many students tend to think that 𝑧∗ is holomorphic, when it is in fact not.  Try and 
prove why! 
 

 

5.1.2.2 Analytic (aka regular) 
 
Though the term “analytic function” is often used interchangeably with "holomorphic function", the word 
"analytic" is defined in a broader sense to denote any function (real, complex, or of more general type). 
Holomorphic functions are analytic and used interchangeably.  
holomorphic↔analytic for complex analysis 
 
If 𝑓(𝑧) is holomorphic/analytic in a region R, then the following holds in R 
1) 𝑓′(𝑧), 𝑓′′(𝑧) …derivatives of all orders exist 
2) 𝑓(𝑧) can be represented as a power series in a neighbourhood of each point in its domain with some non-

zero radius of convergence that can be written as a convergent power series  
 

5.1.2.3 Entire 
 
Holomorphic implies differentiable on a certain given domain, whereas if a function is “entire”, it is differentiable 
on the whole complex plane i.e. differentiable EVERYWHERE (ROC is infinite). 
 
Be sure to understand the difference between differentiable and holomorphic and entire.  Holomorphic means 
differentiable on a certain given domain, where entire means differentiable on ALL of ℂ.  
 

5.2 Other Important Definitions 
 

5.2.1 Harmonic 

A function 𝑢(𝑥, 𝑦) is called harmonic if it is twice continuously differentiable and satisfies the following partial 
differential (Laplace) equation: 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0  

Note: If 𝑢 and 𝑣 satisfy the CRE’s, then both 𝑢 and 𝑣 are harmonic, where 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) 
 

5.2.2 Singularities, Poles and Zeros 
 

A zero is just a place where the value of a complex function is zero. Formally we say, a point 𝑧0 is called a zero of 
order n for the function 𝑓(𝑧) if 𝑓(𝑧) is analytic at 𝑧0 and 𝑓(𝑧) and its first n − 1 derivatives vanish at 𝑧0, but 

𝑓(𝑛)(𝑧0) ≠ 0 i.e. 𝑓(𝑧0) = 𝑓′(𝑧0) = ⋯ = 𝑓𝑛−1(𝑧0) = 0 and 𝑓(𝑛)(𝑧0) ≠ 0 
 
In order to determine the order of a zero we just have to check how many times we need to derive a function 
until it is not equal to zero anymore. 
 

 

𝑓(𝑧) = (𝑧 + 4)2  

Zero is 𝑧 = −4 

𝑓′(𝑧) = 2(𝑧 + 4)  
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𝑓′(−4) = 0  

𝑓′′(−4) = 2 ≠ 0  

So, order of zero here is 2 

 

 
Notice how the order of a zero is equal to the power a parenthesis is raised to 

 
A singularity is generally when a function is not defined in a point. There are three kinds of isolated singularities: 

 
i. Removable singularities. These are functions which can be extended to a holomorphic function 

 

f(z)=
𝑧

𝑧
 

This is not defined at 0, but can be 
extended to a holomorphic function by 
letting f(0) = 1 

 
 

ii. A pole is a point at which the function is undefined, as in infinite (this happens when you divide by 
0, but the numerator is not 0).  
 
 

𝑓(𝑧) =
3

𝑧−1
 has a simple pole (pole of order 1) at 𝑧 = 1  

and 

 f(𝑧) =
3

(𝑧−3)2 has a double pole (pole of order 2) at 𝑧 = 3 

 

 
Formally we say, 𝑧0 is a pole of order n of some analytic function 𝑓(𝑧) if lim

𝑧→𝑧0

(𝑧 − 𝑧0)𝑛 × 𝑓(𝑧) ≠ 0 

(if the power is less than 𝑛, the limit is “infinity” or does not exist.  If the power is more than 𝑛, the 
limit is 0). 

This is the same as saying we should be able to write 𝑓(𝑧) as 
𝑔(𝑧)

(𝑧−𝑧0)𝑛 where 𝑔(𝑧0) ≠ 0.   

In other words, a pole 𝑧0 is a value of 𝑧, so that 𝑓(𝑧0) =
𝑔(𝑧0)

0
, hence 𝑓(𝑧) → ∞ as 𝑧 → 𝑧0 

 

Note: If 𝑧0 is a zero of order n for 𝑓(𝑧), then 𝑧0 is a pole of order n for 
1

𝑓(𝑧)
 

 
If 𝑓(𝑧) and 𝑔(𝑧) have zeros of orders m and n respectively at 𝑧 = 𝑧0  , then ℎ(𝑧) = 𝑓(𝑧)𝑔(𝑧) has a 
zero of order 𝑚 + 𝑛 at 𝑧0. 
If 𝑓(𝑧) and 𝑔(𝑧) have poles of orders m and n respectively at 𝑧 = 𝑧0 , then ℎ(𝑧) = 𝑓(𝑧)𝑔(𝑧) has a 
pole of order 𝑚 + 𝑛 at 𝑧0. 
 
Check power of parentheses to know order of pole 
 

iii. Essential singularities. Essential singularities are singularities which are not removable nor poles. An 
example of this is: 

𝑒𝑥𝑝 (
1

𝑧
) = 1 +

1

𝑧
+

1

2! 𝑧2
+

1

3! 𝑧3
+ ∙ ∙ ∙ 

 

5.3 Contour Integrals 
 

5.3.1 What is a contour integral? 
 

In complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex 
plane. Why is the path chosen is important? Why do we need to know how we go from one point to another? In 
the good old days, when we only needed one axis to describe our input variables, the only way to go from one 
point to another was in a straight line. 
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Now in complex analysis, we need two axes to describe our input variables.  This means that we are no longer 
limited to only one path and there are an infinite number of ways to do this since the only criteria we have is to 
go from the starting point to the endpoint.  This is why it is important to know what kind of path you’re taking 
from the starting point to the endpoint since different paths, in general, give different answers (unless the 
function has an antiderivative everywhere in the complex plane). 

 
 
Formal definition 
Let f : ℂ → ℂ be a continuous function on the directed smooth curve γ 
Let z : ℝ →  ℂ be any parametrization of γ that is consistent with its order (direction) i.e. if 𝑧 = 𝑧(𝑡), 𝑎 ≤ 𝑡 ≤ 𝑏  
is a parametrization of 𝛾, then the line/path/contour integral along  γ is denoted 

∫ 𝒇(𝒛)𝒅𝒛 = ∫ [𝒇(𝒛(𝒕)) × 𝒛′(𝒕)]
𝒃

𝒂

 

𝜸

𝒅𝒕 

Make sure you understand that the product 𝑓(𝑧(𝑡)) × 𝑧′(𝑡)) is just a product of complex numbers.  
 

Note: 
• A smooth curve is a curve that doesn’t cross itself and has no sharp corners 

• We need to find some parametrization 𝑧(𝑡) of 𝛾, where a and b are the start and endpoints of the 
variable t.   
The standard parametrizations for three different smooth curves: 
 
Straight line 
 

 
 
Circle 

 
 

 
Semi-Circle 
 

 
Notice how if you plug in the lower limit you get your start point and plugging in the upper limit you get 
your end point. 
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• Why is the path of 𝛾 so important? Why do we need to know how we go from one point to another?  
As mentioned previously, different paths give different answers unless the function has an 
antiderivative everywhere in the complex plane. 

 
Common “Tricks”: 

• ∫ (𝑓(𝑧) + 𝑔(𝑧))𝑑𝑧 =
 

𝛾
 ∫ 𝑓(𝑧)𝑑𝑧

 

𝛾
+ ∫ 𝑔(𝑧)𝑑𝑧

 

𝛾
 

• ∫ 𝑓(𝑧)𝑑𝑧
 

𝛾
= − ∫ 𝑓(𝑧)𝑑𝑧

 

−𝛾
 

• If 𝛾3 = 𝛾1 + 𝛾2, then ∫ 𝑓(𝑧)𝑑𝑧 = ∫ 𝑓(𝑧)𝑑𝑧 +
 

𝛾1
∫ 𝑓(𝑧)𝑑𝑧

 

𝛾2

 

𝛾3
  

• Independence of paths:  
Some functions don’t care which path you take when you integrate as long as the start and the 
endpoints are the same, integration along different paths will yield the same results. 
If the function is continuous on a contour 𝛾 which is made up of a number of directed smooth curves 
and the function has an antiderivative 𝐹(𝑧) on 𝛾  (𝐹′(𝑧) = 𝑓(𝑧)), 𝑡hen ∫ 𝑓(𝑧)𝑑𝑧

 

𝛾
= 𝐹(𝑧2) − 𝐹(𝑧1) 

So, you can skip the parametrization since the only thing that matters is the starting point and the 
endpoint. 
 

 

∫ 𝑧𝑑𝑧
 

𝛾
  

 
Straight line parametrization: 

 
 

▪ 𝑧(𝑡) = 𝑧1 + 𝑡(𝑧2 − 𝑧1),    0 ≤ 𝑡 ≤ 1  
= −𝑖 + 𝑡(2 + 𝑖 − −𝑖)  
= −𝑖 + 𝑡(2 + 2𝑖)  

▪ 𝑧′(𝑡) = 2 + 2𝑖 
 
 

           𝑠𝑜 ∫ 𝑧𝑑𝑧 = ∫ [−𝑖 + 𝑡(2 + 2𝑖)][2 + 2𝑖]𝑑𝑡
1

0

 

𝛾
  

            = ∫ [(2 − 2𝑖) + (8𝑖)𝑡]𝑑𝑡
1

0
  

            = [(2 − 2𝑖)𝑡 + 4𝑖𝑡2]0
1  

            = 2 + 2𝑖  
 
 
Quarter circle parametrization: 

 
 

▪ 𝑧(𝑡) = 𝑖 + 2𝑒𝑖𝑡    
3𝜋

2
≤ 𝑡 ≤ 0  

▪ 𝑧′(𝑡) = 2𝑖𝑒𝑖𝑡  

 

          𝑠𝑜 ∫ 𝑧𝑑𝑧 = ∫ (𝑖 + 2𝑒𝑖𝑡)(2𝑖𝑒𝑖𝑡)𝑑𝑡
0

3𝜋

2

 

𝛾
  

           = ∫ (−2𝑒𝑖𝑡 + 4𝑖𝑒2𝑖𝑡)𝑑𝑡
0

3𝜋

2
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           = [2𝑖𝑒𝑖𝑡 + 2𝑒2𝑖𝑡]3𝜋

2

0
  

           = 2 + 2𝑖  

 
 No parametrization: 
 
 

 

 

No idea how to parametrize this  ∫ 𝑧𝑑𝑧 = [
𝑧2

2
]

−𝑖

2+𝑖
 

𝛾
= 2 + 2𝑖  

 
 
Notice how all answers are the same.  This function doesn’t care which path you take as long as the start and 
endpoints are the same.  This is because this function 𝑓(𝑧) = 𝑧 has an antiderivative everywhere in the 
complex plane, so the only thing that really matters when doing the calculations are the start and endpoints. 
   

 

 

∫ 𝑧̅𝑑𝑧
 

𝛾
  

 

 
 
         𝛾1:  

▪ 𝑧(𝑡) = 0 + 𝑡(1 − 0) = 𝑡,   0 ≤ 𝑡 ≤ 1  
▪ 𝑧′(𝑡) = 1 

 
         𝛾2:  

▪ 𝑧(𝑡) = 1 + 𝑡(2 + 𝑖 − 1), 0 ≤ 𝑡 ≤ 1  
= 1 + 𝑡(1 + 𝑖)  

▪ 𝑧′(𝑡) = 1 + 𝑖 
 
 
           𝑠𝑜 ∫ 𝑧̅𝑑𝑧 = ∫ 𝑧̅𝑑𝑧

 

𝛾1
+

 

𝛾3=𝛾1+𝛾2
∫ 𝑧̅𝑑𝑧

 

𝛾2
  

                         = ∫ 𝑡(1)𝑑𝑡 + ∫ [1 + 𝑡(1 − 𝑖)](𝟏 + 𝐢)𝑑𝑡
1

0

1

0
  

                         =
3

2
  

 
 Note: No conjugate here, only 𝒇(�̅�) gets the conjugate 

 

 
 
Note:  

∫
1

𝑧
𝑑𝑧

 

𝛾
= {

∫
1

𝑧(𝑡)
𝑧′(𝑡)𝑑𝑡     (1)

𝑏

𝑎

[ln (𝑧)] 𝑧2

𝑧1
         (2)

   

 
                                                   (1)                                                                    (2) 
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You may find it helpful to memorise the following: (if you have a closed contour) 

∫ 𝑧𝑛𝑑𝑧 = 0 if 𝑛 ≠ −1  
 

∫ 𝑧𝑛𝑑𝑧 = {
2𝜋𝑖                  (𝑖𝑓 𝑦𝑜𝑢 ℎ𝑎𝑣𝑒 𝑎 𝑐𝑙𝑜𝑠𝑒 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 𝑤ℎ𝑖𝑐ℎ 𝑜𝑐𝑛𝑡𝑎𝑖𝑛𝑠 𝑜𝑟𝑖𝑔𝑖𝑛)         

0          (𝑖𝑓 𝑦𝑜𝑢 ℎ𝑎𝑣𝑒 𝑎 𝑐𝑙𝑜𝑠𝑒 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 𝑤ℎ𝑖𝑐ℎ 𝑑𝑜𝑒𝑠𝑛′𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑜𝑟𝑖𝑔𝑖𝑛)
  if 𝑛 = −1  

 

5.3.2 Cauchy’s Theorem (aka Cauchy-Goursat) 
 

If 𝑓(𝑧) is holomorphic everywhere within some simply connected region then ∫ 𝑓(𝑧)𝑑𝑧 = 0
 

𝑐
 for every simple 

closed path C lying in the region.  We need 𝑓(𝑧) to be continuous and have no singularities in the region to apply 
this theorem! 
 
This is perhaps the most important theorem in complex analysis!!! 
 

5.3.3 Cauchy Integral Formula 
 

Suppose C is a simple closed curve and the function f(z) is holomorphic on a region containing C and its interior. 

We assume C is oriented counter-clockwise. Then for any point 𝑧0 inside C, 𝑓(𝑧0) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧−𝑧0
𝑑𝑧

 

𝛾
  where the 

integral is a contour integral along the contour 𝛾 enclosing the point 𝑧0. 
Note: 𝑧0 can be the singularity point 

So, ∫
𝑓(𝑧)

𝑧−𝑧0
𝑑𝑧

 

𝛾
= 2𝜋𝑖𝑓(𝑧0) 

 

If we remove the singularity 𝑧0 then ∫
𝑓(𝑧)

𝑧−𝑧0
𝑑𝑧

 

𝛾
= 0. 

So, the main difference with Cauchy’s Theorem and Cauchy’s Integral formula is that we have to use Cauchy’s 
Integral formula when dealing with a singularity.  

 
Cauchy’s Integral Formula can be extended to Cauchy Integral formula for derivatives: 

𝑓(𝑛)(𝑎) =
𝑛!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧−𝑎)𝑛+1 𝑑𝑧
 

𝛾
  

So, ∫
𝑓(𝑧)

(𝑧−𝑧0)𝑛+1 𝑑𝑧
 

𝛾
=

2𝜋𝑖

𝑛!
𝑓(𝑛)(𝑧)  

 
 

5.3.4 Laurent Expansion 

One of the shortcomings of the Taylor series is that the circle of convergence is often only a part of the region in 
which 𝑓(𝑧) is analytic.  As an example, the series 

1+ 𝑧 + 𝑧2 + 𝑧3+... converges to 𝑓(𝑧) =
1

1−𝑧

 
 only inside the circle |z| = 1 even though f(z) is analytic everywhere 

except at z = 1.  

The Laurent series is an attempt to represent 𝑓(𝑧) as a series over as large a region as possible. We expand the 
series around a point of singularity up to, but not including the singularity itself. In other words, the Laurent 
series still works if 𝑧0 is an isolated singularity. 

The figure below shows an annulus of convergence 𝑟1 < |𝑧 − 𝑧0| < 𝑟2 within which the Laurent series (which is an 
extension of the Taylor series) will converge. The extension includes negative powers of (𝑧 − 𝑧0).  
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                 You will use this a lot for the Residue Theorem. 

 

Find the Laurent expansion of 𝑔(𝑧) = 
𝑧

(1+𝑧)(1−𝑧)
 in the following domains  

i.  |𝑧| < 1  
(hint: want to expand about z i.e. want in powers of z) 

ii. |𝑧 − 1| > 2  
(hint: want in powers of z-1) 

i. 
𝑧

(1+𝑧)(1−𝑧)
  

=
−

1

2

1+𝑧
+

1

2

1−𝑧
  

= −
1

2
(

1

1+𝑧
) +

1

2
(

1

1−𝑧
)  

= −
1

2
(1 − 𝑧 + 𝑧2 − 𝑧3 + 𝑧4 + ⋯ ) +

1

2
(1 + 𝑧 + 𝑧2 + 𝑧3 + 𝑧4 + ⋯ )  

= 𝑧 + 𝑧3 + 𝑧5 + ⋯  

ii. 
𝑧

(1+𝑧)(1−𝑧)
  

=
−

1

2

1+𝑧
+

1

2

1−𝑧
  

=
−

1

2

𝑧−1+2
+

−
1

2

𝑧−1
  

= −
1

2
(

1

𝑧−1+2
) −

1

2
(

1

𝑧−1
)  (*) 

(
1

𝑧−1+2
) is not in the correct form that we need. However, (

1

𝑧−1
) is  

Consider (
1

𝑧−1+2
): 

(
1

𝑧−1+2
) = (

1

2

1+
𝑧−1

2

) if dividing by 2 and (
1

𝑧−1+2
) = (

1

𝑧−1

1+
2

𝑧−1

) if dividing by 𝑧 − 1 

Here we have |𝑧 − 1| > 2  so 
2

|𝑧−1|
< 1 so use form 2 

So * becomes 

= −
1

2
(

1

𝑧−1

1+
2

𝑧−1

) −
1

2
(

1

𝑧−1
)  
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= −
1

2
×

1

𝑧−1
(

1

1+
2

𝑧−1

) −
1

2
(

1

𝑧−1
)  

= −
1

2(𝑧−1)
(

1

1+
2

𝑧−1

) −
1

2
(

1

𝑧−1
)  

= −
1

2(𝑧−1)
[1 −

2

𝑧−1
+ (

2

𝑧−1
)

2
− (

2

𝑧−1
)

3
+ ⋯ +

(−1)𝑛2𝑛−1

(𝑧−1)𝑛 + ⋯ ] −
1

2
(

1

𝑧−1
)   

= −
1

2(𝑧−1)
× ∑ (−1)𝑛 (

2

𝑧−1
)

𝑛
∞
𝑛=0 −

1

2
(

1

𝑧−1
)    

 

 
 

5.3.5 Residue Theorem 
 

5.3.5.1 Definition  
 

The residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line 
integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite 
series as well. It generalizes Cauchy’s Theorem and Cauchy's integral formula. 
 

The numerator of the term 
𝑎−1

𝑧−𝑧0
, 𝑎−1  is called the residue of 𝑓 at the pole 𝑧0.  We write 𝑟𝑒𝑠(𝑓, 𝑧0)= 𝑎−1 

 
What is a residue? 
As already mentioned, the holomorphic functions have an extraordinary property: if you compute an integral along 
a path, the value of the integral does not depend on the path! More precisely, if the function is holomorphic 
everywhere inside a closed path, the integral is just zero. But if the function has poles (zeroes at the 
denominator, terms in the Laurent series), every pole brings a nonzero contribution called its residue. You can 
shrink the path as much as you want, even turning it to infinitesimal circles around every pole, provided you keep 
the poles in. So, the residues are what is left (as regards integration) after you removed all the holomorphic parts of 
the domain. 
 

 
 

What's so special about the 𝑎−1 term in the Laurent expansion?" The answer can be stated very simply and can 
be understood without needing complex numbers: Every other term in the Laurent series integrates to a power 
function. That one doesn't. 

 
 

5.3.5.2 Residue Theorem 
 

Let 𝑓 be holomorphic on an open set containing a contour 𝛾 and its interior except for the poles 𝑧1, 𝑧2, … 𝑧𝑘  
inside 𝛾 then ∫ 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖 ∑ 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠

 

𝛾
 . This is called the residue formula. 

 

5.3.5.3 Calculating Residues 
 
There are 3 common techniques to calculate residues 
 
1) Use limits and find residue at SIMPLE pole 

1

(𝑛−1)!
lim

𝑧→𝑝𝑜𝑙𝑒
[

𝑑𝑛−1

𝑑𝑧𝑛−1
((𝑧 − 𝑝𝑜𝑙𝑒)𝑛 × 𝑓(𝑧))]  

http://www.mymathscloud.com/
https://en.wikipedia.org/wiki/Line_integral
https://en.wikipedia.org/wiki/Line_integral
https://en.wikipedia.org/wiki/Analytic_function
https://en.wikipedia.org/wiki/Infinite_series
https://en.wikipedia.org/wiki/Infinite_series
https://en.wikipedia.org/wiki/Cauchy%27s_integral_formula
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Note: Instead of taking the limit you can write what is in the bracket as 
…

(𝑧−𝑝𝑜𝑙𝑒)𝑛…
  and evaluate … at 

f(singularity) i.e cover up pole in function and evaluate) 
 

2) Expand about the pole (calculate derivatives) 

Hint: Get the function in the form 
𝛼

(𝑧−𝑝𝑜𝑙𝑒)𝑛 [
𝑔(𝑛−1)(𝑝𝑜𝑙𝑒)

(𝑛−1)!
] 

 
We only use this way if calculating derivatives is easy 
 
 

3) Expanding about the pole (use Taylor expansion or Laurent series).  We usually use this when the power of 
the pole is high and hence calculating derivatives would be painful 

𝛼

(𝑧−𝑝𝑜𝑙𝑒)𝑛 [
𝑃𝑖𝑐𝑘 𝑜𝑢𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑟𝑜𝑚

𝑡𝑒𝑟𝑚 𝑤𝑖𝑡ℎ 𝑛 − 1 𝑝𝑜𝑤𝑒𝑟
]  

                  We usually get what is inside this bracket from putting in form 
1

1±𝑧
 form and expanding OR Laurent 

series 
 

5.3.6 Techniques Summary 
 

5.3.6.1 How To Choose a Contour and Contour Integration Techniques 
 

• Remember the definitions 
A contour is a piecewise smooth curve 
A contour is called simple if it does not cross itself  
A contour 𝑐 is closed if and only if the start point of 𝑐 is equal to the end point of 𝑐 
A contour is defined as "made up of a finite number of smooth paths 

 
• Common (toy) contours include 

 

                                      
 

 

                    
  

The four most commonly used are circle/semi-circle, triangle, indented semi-circle and keyhole.  A rectangular 
contour depends on the nature of pole and residues of your function. 

 
Quick hints: 

o If ∫ 𝑡𝑟𝑖𝑔 ,
2𝜋

0
 use circular contour 

o If ∫ 𝑙𝑜𝑔 ,
 

 
 use an indented semi-circle around origin 

o If ∫ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟  ,
 

 
 use keyhole contour when we have branch cut 

o If ∫  
∞

0
with trig in it, write as ∫  

∞

−∞
 and use 

▪ indented semi-circle if poles (with estimation lemma for some of the paths) 
▪ semi-circle if no poles  

Remember if 𝑐𝑜𝑠𝑥  we write as Re(𝑒𝑖𝑥) and if 𝑠𝑖𝑛𝑥 we write as 𝐼𝑚(𝑒𝑖𝑥) 

o If  ∫
𝑝(𝑥)

𝑞(𝑥)
 

∞

−∞
 or ∫

𝑝(𝑥)

𝑞(𝑥)
 𝑒𝑖𝑎𝑥∞

−∞
  i.e. have 𝑐𝑜𝑠 or 𝑠𝑖𝑛 in them and use  

▪ indented semi-circle if poles (with Estimation or Jordan’s Lemma for some of the paths) 
▪ semi-circle if no poles 

𝑞(𝑥) has degree 1 more than 𝑝(𝑥), use Jordan’s Lemma to show top arc goes to 0 

http://www.mymathscloud.com/
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𝑞(𝑥) has degree much bigger than 𝑝(𝑥), use estimation lemma to show top arc goes to 0 
 

Get good at picking your own contour (remember to take contour anticlockwise).  For a simple contour, the 
closed contour must enclose one or more poles otherwise the integral is zero.   
 
Possible methods: 

1) pick a path and use  ∫ 𝒇(𝒛)𝒅𝒛 = ∫ [𝒇(𝒛(𝒕)) × 𝒛′(𝒕)]
𝒃

𝒂

 

𝜸
𝒅𝒕   

2) Pick a contour to avoid poles and use Cauchy’s Theorem to say equals zero 
3) Pick a contour with poles and use Cauchy Integral or Residue Theorem 

Remember: sometimes we use the fact that we know the answer to work backwards from one of the 
paths giving what the integrand you’re trying to find (see * below) 

 
 

∫  
∞

0
  or ∫  

∞

−∞
integrals: 

One very common use for contour integrals is the evaluation of integrals along the real line that are not readily 
found by using only real variable methods. When choosing a contour to evaluate an integral on the real line, a 
contour is generally chosen based on the range of integration and the position of poles in the complex plane.  
Many cases can be solved by integrating around the top half of a circle with radius of infinity and integrating 
along the entire real line. 

          
 

 
For example, for an integral from −∞ to ∞along the real axis, the contour at left could be chosen if the function 
f had no poles on the real line, and the middle contour could be chosen if it had a pole at the origin. To perform 
an integral over the positive real axis from 0 to ∞ for a function with a pole at 0, the contour at right could be 
chosen. 
 
Sometimes you can use the fact that you know the answer is zero from the Cauchy Theorem or whatever 
numerical answer is from Residue or Cauchy Integral Formula to work backwards to get the integral that you are 
asked to find which is from ONE of the paths or two of them combined. 
*In the common sketch example below, we know ∫  

 

𝛾1
+ ∫  

 

𝛾2
+ ∫  

 

𝛾3
+ ∫ = 0 

 

𝛾4
 and we can work out ∫  

 

𝛾1
 and ∫  

 

𝛾3
 

and cleverly combine ∫  
 

𝛾2
 and ∫  

 

𝛾4
 to give us what we want. 

We do this for trig types ∫  
∞

0
… =

1

2
∫  

∞

−∞
… (where … is trig) 

 
 

 
 

𝛾1: use Estimation Lemma or Jordan’s Lemma to show → 0 
𝛾4: Parametrize 𝑧 = 𝑡 

      ∫ … 
𝑅

𝜀
  

𝛾2: Parametrise 𝑧 = 𝑡  to get ∫ …
−𝜀

−𝑅
  

      Substitute 𝑧 = −𝑢 to get ∫ … 
𝑅

𝜀
 

      Put 𝑢 back as 𝑡 
      Then combine with 𝛾4 to get  

      2 ∫  
𝑅

𝜀
…  

     If done correctly … should be same as … given in question 

     Send 𝜀 → 0, R→ ∞  

http://www.mymathscloud.com/
https://mathworld.wolfram.com/RealLine.html
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      2 ∫  
∞

0
…  

𝛾3: Either use parametrisation 𝑧 = 𝜀𝑒𝑖𝑡, 0 ≤ 𝑡 ≤ 𝜋  OR expansion of 𝑒𝑖𝑧 and then parametrization for 
      one part and estimation for other part to show → −𝜋 or −𝜋𝑖  

 
As mentioned, get good at the techniques for this course for contour integration as this is the crux of Complex 
analysis!! Methods include: 

• Direct integration of a complex-valued function along a curve in the complex plane (a contour) 

• Application of Cauchy Integral Formula 

• Application of the  Residue Theorem 
 
 
The following topics will be stated only for further reading 
 

5.4 Triangle Inequality 
 
Suppose f(t) is a complex valued function of a real variable, defined on a ≤ t ≤ b. Then  
 

• Triangle Inequality 1 for integrals 

 |∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
| ≤  ∫ |𝑓(𝑡)|𝑑𝑡

𝑏

𝑎
  

This is an IMPORTANT Lemma and used to prove the estimation lemma 
 

• Triangle Inequality 2 for integrals  

For any function f(z) and any curve γ, we have  |∫ 𝑓(𝑧)𝑑𝑧
 

𝛾
| ≤ ∫ |𝑓(𝑧)||𝑑𝑧|

 

𝛾
  

This is also used to prove the estimation lemma below 
 

5.5 Estimation Lemma (aka ML Inequality Theorem) 
 

This is a very simple, yet very useful result in complex analysis 

Let 𝑓(𝑧) be continuous on a curve 𝛾. If |𝑓(𝑧(𝑡))| ≤ 𝑚 i.e. 𝑚={max
𝑧∈𝛾

{f(z)} then 

|∫ 𝑓(𝑧)𝑑𝑧
 

𝛾
)| ≤ 𝑚 𝐿(𝛾), where 𝐿(𝛾) is the length of the curve 𝛾 

The proof of this uses the two inequalities in the section above 
 

Estimation lemma and triangle inequality 1 are often used to show    contour parts of an integral go to 0 
 

Some useful modulus results you will need when applying Estimation lemma are: 

|eia| = 1 where a is real ⇒|reia| = |r||eia| = |r| 

|eiz| = |ei(a+ib)| = |eia||ei2b| = |eia||e−b| = |e−b| = e−im(z) 

so similarly, |eiReiθ
| = |ei(Rcos θ+iRsin θ)| = |eiRcosθ||e−Rsin θ| = |e−Rsin θ|(1) = e−Rsinθ 

Note: |eiz| ≤ 1 for im(z) ≥ 0  (if im(z) < 0 then unbounded) 
 

5.6 Cauchy Inequality 
 

|𝑓(𝑛)(𝑧0)| ≤  
𝑛! × max

|𝑧−𝑧0|=𝑅
(𝑓(𝑧))

𝑅𝑛  

This comes from Cauchy Integral formula for n derivatives and then estimation lemma 
 

5.7 Jordan’s Lemma 
This comes from Cauchy Integral formula for n derivatives and then estimation lemma 

lim
𝑅→∞

 ∫ 𝑓(𝑧)𝑒𝑖𝑎𝑧𝑑𝑧 = 0,
 

𝑐𝑅
  where a is real 

This says, consider arc getting bigger and bigger, if we integrate along the arc we end up with 0 
Consider semi-circle or contour to integrate across.   
Let’s say upper arc (semi-circle arc with radius R).   

http://www.mymathscloud.com/
https://en.wikipedia.org/wiki/Complex_number


www.mymathscloud.com 
 

 Page 23 of 23 

 
If we integrate along arc 𝑐𝑅 and take the limit as R approaches infinity the value of the arc does not contribute 
anything to our contour.  
 

Note: Most commonly look at 𝑓(𝑧) =
𝑃(𝑧)

𝑄(𝑧)
 where deg 𝑄 − deg 𝑃 ≥ 1 

 

http://www.mymathscloud.com/
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